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PREFACE

Part of the Project RAND research program consists of

basic supporting studies in mathematics. The mathematical

research presented here concerns the periodic solutions

of the Lienard differential equation, which applies to a

wide variety of physical problems.
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SUMMARY

This Memorandum presents a new condition which implies

that the differential equation

+ f(x)k + q(x)x = o

has an essentially unique non-trivial periodic solution,

to which all other solutions tend as t -.
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A UNIQUENESS CONDITION FO NONTRIVIAL PERIODIC SOLUTIONS
TO THE LINARD EQUATION

The existence and uniqueness of periodic solutions to

the equation

(1) X + f(x)x + q(x)x 0 (f(x), q(x) continuous)

have been widely discussed during the past thirty-five

years, notably by Lienard (51 and by Levinson and Smith

[4]. The purpose of the present paper is to present a

uniqueness condition for periodic solutions which includes

one of those given in the latter paper [4] as a special case.

Define the following fuqnctions:

F(x) - f(x)dx,

In the Poincarqdphase-plane (i.e., the (x, ±)-plane),

define (as in (4]) a pseudo--energy function

E(x, i) - %(i + F(x))2 + Q(x).

Using this energy function, the following result may

be proved:



Lemma. Suppose the following conditions hold on the

coefficients of equation (1):

(a) q(x) > 0 for all x 4 0;

(b) there exist real numbers a < 0 and b > 0

such that F(a) = F(b) = F(O) = 0, and

xF(x) < 0 for all other x such that a < x < b;

(c) f(x) > 0 for x < a and x > b;

(d) lim Q(x) = lim Q(-x) =
X-M X-00

Then there exists at least one nontrivial periodic

solution, and at most one which enters both the region

x < a and the region x > b.

Proof. Along solution curves, dE/dt = -xq(x)F(x).

Thus the phase-plane is divided into three strips (see

Fig. 1): x < a (where dE/dt < 0), a < x < b (where

dE/dt > 0), and x > b (where dE/dt < 0). Now let r0 be

a limit cycle which enters all three regions, and suppose

it passes through the point (0, X0 ). Its journey around

the phase-plane naturally divides into five parts (as in

the figure).

Now say xA > xO. Let TA be the curve through (0, xA).

In part I of TA's journey about the phase-plane it is

gaining energy. Since, however, x > x for correspond-xA x0

ing values of x in part I, it follows that the

change in E per unit x is less on TA than on r0 (for

corresponding x). Thus the amount of energy gained by
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going from x = 0 to x - b along rA is less than that

gained by going along r. Similarly, rA gains less energy

than r0 in parts III and V. A simple computation ([i], [2])

shows that rA loses more energy than r 0 in parts II and IV.

Thus rA must, on balance, lose energy in making a single

circuit.

Similarly any rB which starts inside r0 will gain

energy in making a circuit provided it enters both the

left-hand and right-hand regions. Thus if such a limit

cycle exists, it is unique and stable on both sides.

To show a limit cycle exists, we need only find an

xB so small that the cycle starting at (0, XB) gains

energy, and an xA so large that the cycle starting at

(0, SA) loses energy. This is easy. Note, however, that

such a limit cycle need not enter all three regions (as

we assumed r0 did [11, [3]), and thus we cannot conclude

that there is only one limit cycle unless we insure that

any limit cycle will enter both the region x < a and the

region x > b. Levinson and Smith met this problem by

assuming f(x) and q(x) symmetric about zero, but we shall

show that a much weaker condition is adequate.

Theorem 1. Suppose an equation satisfying the con-

ditions of the 'lemma satisfies also the following:

a b(*) q(x)x dx =f q(x)x dx.



Then there exists a unique (up to translations in t) non-

trivial periodic solution, to which all other solutions

tend.

Proof. We have already shown that there is at most one

limit cycle which enters both the regions x < a and x > b.

We have also shown that some limit cycle exists. Now

we will show that under condition (*), any limit cycle

enters both the above regions, and thus uniqueness follows.

First note (see Fig. 2) that along the curve v = -F(x),

x

E(x, v) = 5 q(x)x dx.
0

x

Since f q(x)x dx is monotone decreasing for x < 0,
0

and monotone increasing for x > 0, it follows that the

energy along the curve v - -F(x), a < x < b, is always

less than

Sqxx)x dx dx.0 0

Now, consider the orbit I (which starts at (a,o)) or

the orbit II (which starts at (b, 0)). The energy E is

increasing along these orbits, and thus neither of them

can intersect v = -F(x) between a and b, since each orbit
a

has initial energy q(x)x dx. Thus, I must enter x > b
'0

and II must enter x < a. It immediately follows that any

limit cycle must do likewise, and the proof is complete.
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Corollary. Given an equation of the form (1) which

satisfies the following conditions:

(a) f(x) = f(-x), q(x) = q(-x) for all x;

(b) q(x)x is differentiable for all x, and q(x) > 0

for x + 0;

(c) there exists an a > 0 such that f(x) > 0 for

x > a;

(d) F(x) < 0 for 0 < x < a, F(a) = 0;

(e) lim F(x) = lim Q(x) = + w.
XýC XýC

Then there exists a unique (up to translations in t) non-

trivial periodic solution.

Proof. Assumption (a) shows that F(a) = F(-a) and

Q(a) = Q(-a), and thus the corollary is easily seen to

follow. This corollary is the theorem (unnumbered) which

Levinson and Smith prove in Section 4 of [4).

We conclude by giving a specific example of an equa-

tion which has a unique stable limit cycle by our theorem,

but about which the Levinson--Smith theorems are silent:

+ (3x 2 -4x-3)x + q(x)x = 0

. -27x for x ( 0

where q(x) f

x for x > 0

(here a - -- 1, b = 3).
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